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Poles of the scattering matrix in the complex energy plane play an important role for pulse propagation
through a resonant tunneling system. Therefore, we employ a special variant of the method of steepest descent
to calculate the transmitted pulse. In this variant, the parameters defining the transmission resonances and the
shape of the incident pulse are taken into account for the evaluation of the saddle points. As a result, we obtain
a multi-saddle-point approximation �MSA� with a number of saddle points which are specific for a given
combination of pulse and resonance. This is in contrast to the usual variant of the saddle point approximation
�single-saddle-point approximation �SSA�� in which only the phase of the free time evolution operator is made
stationary, leading to a single saddle point in the resonant tunneling problem. We apply our multi-saddle-point
method to an incident Gaussian pulse comparing with the results of the SSA and the analytical solution. Apart
from quantitative advantages of the MSA, in general, it is found that in contrast to the SSA, the MSA is capable
of describing the center of the transmitted pulse for a narrow resonance.

DOI: 10.1103/PhysRevB.77.045318 PACS number�s�: 73.23.Ad, 03.65.Xp, 73.63.�b

I. INTRODUCTION

The transmission of wave packets through a resonant
quantum system �QS� is a long standing problem. It is inter-
esting from either the theoretical or practical point of view.
In particular, its solution could find applications in the de-
scription of resonant pulse transmission through various de-
vices such as double barrier diodes, quantum dots, and reso-
nant tunneling transistors.1,2 For effectively one-dimensional
systems, pulse propagation in resonant tunneling has been
investigated in detail numerically1,3–6 and in a number of
cases analytically7–10 �for reviews of tunneling transport in
general, see Refs. 1 and 11�. It is commonly believed that the
problem has no general solution because the transmitted
pulse depends strongly on the complicated relations between
the parameters defining the incident pulse �the width, the
position of the center of the pulse in the momentum space,
the pulse form� and the parameters defining the QS �energy
levels, distances between them, widths of levels�. To find the
generic properties of pulse transmission, nevertheless, it is
interesting to study analytical solutions found in special
cases and to compare them to solutions resulting from more
general approximation schemes.

In the present paper, we develop further a method describ-
ing pulse transmission through a resonant QS described in
Refs. 12–14. Here, a resonant nanosemiconductor device is
represented by a single Breit-Wigner resonance or a single
Fano resonance in the transmission S�k�. The incident pulse
is represented by its associated wave function in k space. We
apply the method of steepest descent to find the transmitted
pulse for an arbitrary incident pulse. As a first application,
we consider an incident Gaussian pulse interacting with one
or two resonance poles of the S matrix. A Gaussian pulse is
taken, first, because in this case, analytical results exist,13

which we use to verify our saddle point method. Second, it is
particularly easy to relate the Gaussian pulse to an experi-
mental incident current pulse.

The method of steepest descent has been used in a number
of transient problems closely related to the one we consider.

Usually, the relevant saddle points are determined by the
stationary conditions applied to the free phase only �single-
saddle-point approximation �SSA�, see Eq. �13�� while pos-
sible contributions of poles have to be taken into account
separately.15–18 This procedure depends either on the type of
the initial state or the structure of QS. In the version of the
steepest descent method, we propose the calculation of the
saddle points including information about the initial wave
packet and the tunneling structure as well. This leads to a
number of additional saddle points �multi-saddle-point ap-
proximation �MSA�, see Eq. �11�� representing the contribu-
tions of poles in the transmission amplitude or even in the
Fourier transform of the incident pulse.19,20 Being joined
with a pass to suitable dimensionless variables, this gives a
general solution for the pulse transmission problem. We find
for our particular application that in contrast to the SSA,
which is a good approximation for wide energy levels, the
MSA is well applicable for narrow resonance states also and,
in addition, it can describe two important phenomena found
in the analytic result for the transmitted pulse: First, the
decaying-state type of transmitted pulse that results for a
narrow resonance and, second, characteristic oscillations su-
perimposed to the decaying-state signal.

The paper is organized as follows. In Sec. II, the multi-
saddle-point method is developed. In Sec. III, the transmis-
sion of the Gaussian packet is investigated and analytic and
numeric results are presented. The exact and the asymptotic
expressions are compared for different types of resonance
levels. In Sec. IV, the conclusion and the comparison of the
SSA and the MSA method are given.

II. MULTI-SADDLE-POINT METHOD

We consider a one-dimensional wave packet, character-
ized by the wave function ��x , t�, which is incident for nega-
tive times moving in the positive direction along the x axis
�see Fig. 1�. The group velocity of the incident pulse is

v0=
�k0

m , where m is the effective mass of the particle, k0 is its
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center of mass in the momentum space, and a is its width in
real space. The space coordinate is chosen so that the scat-
tering potential is confined to the interval x� �−d ,0�, vanish-
ing outside the interval. The time coordinate is taken so that
at t=0, the center of the unperturbed incident pulse is located
at x=0. We are interested in the transmitted amplitude in the
domain x�0 for the time moments t�0. It can be described
by the following standard expression:

��x � 0,t� = �
−�

� dk
�2�

�0�k�S�k�exp�ikx − i
�

2m
k2t� , �1�

where �0�k� is the wave function of the incident pulse in k
space. Here, we assume that the confinement of �0�k� around
k0 is strong so that essential contributions to the integral arise
from positive k only.

Thus, the scattering problem is reduced to the calculation
of this integral. Of course, this cannot be done analytically in
general and some approximation schemes must be used. The
most adequate is an asymptotic expansion. Usually, a station-
ary phase method with the phase of free motion is applied.
However, this method requires the factor at the oscillating
exponent to be smooth.21 This property fails in the vicinity of
the pole position for a narrow resonance. So, additional con-
siderations have to be employed.22–24 To overcome this dif-
ficulty, we propose to proceed with the special form of the
steepest descent method which includes in a natural way in-
formation about an arbitrary resonance �its position in the
complex momentum plain and the width�. In this representa-
tion, information about the resonance is incorporated in the
phase factor which is a complex valued function having a
shape maximum for a narrow resonance. Then the integral
can be approximated well by the asymptotic expression
given by the standard saddle point formula. This is so be-
cause the narrower the resonance is, the better all the neces-
sary conditions for the applicability of our method are ful-
filled in the vicinity of the saddle point in the momentum
space. In fact, in this way, we invert the obvious disadvan-
tage of the stationary phase method into the advantage given
by the saddle point consideration. That actually is possible
due to the transition into the complex k plain.

Furthermore, we use an expression for the transmission
amplitude as given by

S�k� = 	
i=1

N 
S0
i

i
�i

2

k − ki + i
�i

2
� + Sb, �2�

which is discussed in Appendix A. In the representation in
Eq. �2�, it is assumed that in the relevant k range where �0�k�
is non-negligible, S�k� is composed of a background term Sb

and of the contributions of N resonances i=1, . . . ,N of
weight S0

i . These resonances are located in the complex k
plane at Ki=ki− i�i /2.

In a scattering problem, one is usually interested in the
transmitted amplitude at long time intervals. To investigate
this case, we use the saddle point method which allows us to
calculate analytically the asymptotic value of integrals of the
form �Cf�z�e�g�z�dz for �→�, where C is a given contour in
the complex plane. If the integral converges and the contour
of integration can be deformed to the steepest descent path,
the leading term of the integral is given by the expression21

�
C

f�z�e�g�z�dz 
 	
k
� f�zk�e�g�zk��−

2�

�g�2��zk�
�, � → � ,

�3�

where zk is the kth saddle point defined by the condition
��d /dz�g�z��z=zk

�g�1��zk�=0. The branch of �−g�2��zk� �g�2�

being the second derivative of g� is chosen in such a way that
arg��−g�2��zk�� is equal to the angle between the positive
direction of the tangent to the contour of integration in zk and
the positive direction of the real axis. We note that if f�z� or
g�z� has singularities in the complex plane, further contribu-
tions may arise in Eq. �3� from the deformation of the inte-
gration path.

When applying the saddle point approximation to the in-
tegral in Eq. �1�, special care has to be taken of the singu-
larities in S�k�. To do so, we transform the integrand. In the
first step, the dimensionless variables

x̄ =
x

a
, 	 =

t

ta
, s = a�k − k0�, li = aki, and 
i = a

�i

2
,

�4�

with ta= ma2

� , are introduced. Here, we choose the width a of
the unperturbed incident pulse at t=0 in real space as a ref-
erence length in the problem. This means that we “measure”
the QS and other characteristics of the transmission in terms
of the incident pulse size: In dimensionless quantities, the
coordinate variable becomes x̄, the time variable is 	, where
ta is the characteristic time of the pulse, the �shifted� momen-
tum is s, the position of the poles of the S matrix and the
center of the package position in momentum space are li�0
and l0, respectively, and the width of the ith resonance is 
i.
Also, we introduce the following additional notation:

�i = �i + i
i, �i = l0 − li, and q = x̄ − l0	 . �5�

With the new variables, we now write Eq. �1� as

x

Ei

QS

a
a

υ0

0-d

FIG. 1. Schematic representation of the resonant transmission of
an incident pulse.
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��x̄ � 0,	� = 	
i

N

�i�x̄,	� + �b�x̄,	� , �6�

with

�i�x̄,	� = i

iS0

i

a�2�
exp�il0�x̄ −

1

2
l0	��Ii, �7�

Ii = �
−�

�

ds
0�s�
1

s + �i
exp�iqs − i

	

2
s2� = �

−�

�

ds exp�gi
res�s�� ,

�8�

gi
res�s� = iqs − i

	

2
s2 − log�s + �i� + log�
0�s�� . �9�

Here, 
0�s�=�0�k−k0� is centered around s=0. Furthermore,

�b�x̄ � 0,	� = i
Sb

a�2�
exp�il0�x̄ −

1

2
l0	��J , �10�

with the integral J=�−�
� ds exp�gbg�s�� and gbg�s�= iqs− i 	

2s2

+log�
0�s��. Since the integral J can be gained from the limit
J=lim
i→� i
iIi, we will focus on Ii in the following. As one
can see, in variables �4� and �5�, the size of the incident
packet enters amplitude �7� as an overall factor. For actual
calculations, it does not matter whether the packet is wide or
narrow or whether the level of the QS is wide or narrow. All
possible relations are incorporated on an equal footing.

We now apply the saddle point method �Eq. �3�� to
obtain an approximation for Ii at finite �=1. The motivation
for this approach is that for each i, the integrand of the
integrals in Eq. �8� might have a number of relevant
saddle points sik

res denoted by the index k and determined
by the condition ��d /ds�gi

res�sik
res�gi

res�1��sik
res�=0. Apart from

the “free phase” iqs− i	s2 /2, these maxima could also come
from strong variations in 
0�s� or S�s+ l0�. As a consequence,
a number of saddle points,

sik
res = sik

res�l0,li,
i,	,q� , �11�

result. A multi-saddle-point approximation �MSA� is then
obtained with

Ii 
 Ii
MSA = 	

k

exp�gi
res�sik

res���−
2�

gi
res�2��sik

res�
, �12�

where gi
res�2� denotes the second derivative of gi

res�s�. Com-
bining the exponential form of the integrand in Eq. �6� and
the dimensionless variable approach, one can apply the
saddle point method with maximal efficiency. As pointed
out in Eq. �11�, the stationary points depend on a variety of
parameters �l0 , li ,
i ,	 ,q� representing the intricate interplay
between the incident pulse and the resonance. In contrast,
if the integrals in Eq. �8� are calculated directly via the
saddle point method setting in Eq. �3�, g�s�= iqs− i 	

2s2

� iqs− i�̄�s�	, a single saddle point,

s0 =
q

	
= s0�q,	� , �13�

results, leading to a SSA. Note that s0 contains no informa-
tion about the resonance. On general grounds, one expects
substantial corrections to the SSA if S�s+ l0� varies strongly
in the vicinity of s0. The same happens if the incident pulse

0�s� is not a smooth function close to s0. In the subsequent
sections, we will consider as an explicit example an incident
Gaussian reference pulse. We will demonstrate that, indeed,
there are qualitative corrections to the SSA. These correc-
tions consist of characteristic oscillations in the wave func-
tion of the transmitted pulse present in the analytical result
but absent in the SSA. These oscillations can be described in
the MSA where they result from the interference of the con-
tributions stemming from different saddle points.

III. TRANSMISSION OF A GAUSSIAN PULSE

A. General results

We apply our approach to an incident Gaussian pulse,


0�s� = �0 exp�−
s2

2
� . �14�

Inserting Eq. �14� in Eq. �9� yields

gi
res�s� = isq − �s2 + log��0� − log�s + �i� , �15�

with �= �1+ i	� /2. The condition gi
res�1�=0 leads to two

saddle points, k=1,2, for each i which are given by

si1/2
res � s1/2 =

1

2
� iq

2�
− �i� �

1

2
�� iq

2�
+ �i�2

−
2

�
�1/2

.

�16�

We obtain the following from Eq. �12�:

Ii
MSA = exp�gi

res�s1���−
2�

gi
res�2��s1�

+ exp�gi
res�s2���−

2�

gi
res�2��s2�

, �17�

with

gi
res�2��s� = − 2� +

1

�s + �i�2 , �18�

from which �MSA can be calculated according to Eq. �7� re-
placing Ii→ Ii

MSA.
Furthermore, for the particular case of the Gaussian pulse,

one finds the analytic expression13

Ii = − i��0 exp�− ��i
2 − iq�i�erfc� q

2��
− i�i

��� , �19�

where erfc�x� is the complementary error function, defined as
erfc�x�=1−erf�x�. As shown in Appendix B, the MSA and
the analytical result agree exactly in the limit 	→�.

The SSA result is
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Ii
SSA = �0�2�

i	

1

q

	
+ �i

exp�−
q2

2	2�exp�i
q2

2	
� . �20�

Equation �20� is derived using the saddle point approxima-
tion �Eq. �3�� for the integral in the first equality in Eq. �8�,
i.e., using the “free saddle point” in Eq. �13�. With Eq. �7�,
the saddle point contribution is obtained by replacing
Ii→ Ii

SSA,

��i
SSA� =

��0�
a


i�S0
i �

�	
exp�−

q2

2	2� 1

��q

	
+ �i�2

+ 
i
2

. �21�

In leading order 1 /	, �=0 and for N=1, the result for �i
SSA is

identical with the weakly distorted Gaussian pulse �WDG in
Eq. �10� of Ref. 13, �i

SSA
�WDG.

B. Numerical results

Representing the tunneling structure with Eq. �2� and the
incident pulse with Eq. �14�, the subsequent figures �Figs.
2–4� show the transmitted Gaussian pulse in MSA �Eqs. �7�
and �17�� and the analytic result �Eq. �19�� for a number
of cases with N=1. Reasonable agreement between
�1

MSA=�MSA and the analytical expression for � is obtained.
The following general picture emerges: For sufficiently large
values of 
1 �
1�0.2, see Figs. 2 and 3�, the contribution
from s2 is completely negligible and no oscillations are
found. In this regime, the integrand in I1 is a smooth function
and the SSA and the MSA one well working approximations.

A weakly distorted Gaussian pulse �SSA
�WDG
� results
as already demonstrated in Ref. 13. In the opposite limit, for
small 
1, the MSA is still working �see Fig. 4�. The contri-
bution from the saddle point s1 still describes correctly the
general behavior of the wave function, which has now
changed to a strongly asymmetric decaying-state signal. Fur-
thermore, the contribution of s2 in the MSA represents an
additional term whose interference with the contribution of
s1 leads to the characteristic oscillations seen in Fig. 4. In
Ref. 13, it was derived that the decaying-state signal corre-
sponds to a second component in the analytical wave func-
tion denoted with �DS therein. Since �DS is structurally dif-
ferent from �WDG
�SSA, the SSA fails to represent the
decaying-state signal as well as the characteristic oscillations
for a narrow resonance. Instead, the SSA gives a false
weakly distorted Gaussian pulse.

Our numerical examples suggest that one can approxi-
mate the resonantly transmitted wave function resulting from
the incident Gaussian pulse in the following way. For large
values of 
i, the complete wave function can be approxi-
mated using the saddle point s1 alone in Eq. �17�. For small
values of 
i, if we are interested only in the behavior of the
signal amplitude averaged in space or time �which is most
probably the case for a realistic detector�, the wave function
is again described well by expression �17� with only s1 taken
into account. However, if we are interested in the character-
istic oscillations, then we have to take into account the small
interfering contribution of the second critical point s2 as well.

The presented method also allows us to adequately de-
scribe resonant quantum systems with a number of resonant

FIG. 2. ��MSA�x̄ ,	�� �dashed line� and ��� �solid line� for N=1,
Sb=0, 	=100, S0

1=1.0, l0=1.0, l1=1.0, 
1=2.0 �left hand side�, and

1=0.2 �right hand side�.

50 100 150 200 250 300
x

-3

-2

-1

1

2

3

Arg�Ψ�

FIG. 3. arg��MSA� �dashed line� and arg��� �solid line� on the
left hand side for N=1, Sb=0, 	=100, S0

1=1.0, l0=1.0, l1=1.0,

1=0.2 �see right hand side of Fig. 3� and on the right hand side for
N=1, Sb=0, 	=100, S0

1=1.0, l0=1.0, l1=1.0, 
1=0.01 �see left hand
side of Fig. 5�.
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levels. Figures 5 and 6 show the absolute value of the trans-
mitted pulse wave function in the case of a QS with two
resonant levels for different values of 
i.

IV. CONCLUSIONS

We have developed a new asymptotic method for the so-
lution of the problem on pulse propagation through a reso-
nant QS described in the S-matrix approach. It is based on
two ideas: First, a special choice of dimensionless variables
describing either the system or the pulse and, second, the
steepest descent method for the calculation of the involved
integrals that admits to describe any relation between these
variables. Hence, the information about the pulse and the QS
enters uniquely into the saddle points and the path directions.
This way, a good approximation for the transmitted pulse can
be obtained. To verify the method, we have investigated the
transmission of a Gaussian pulse through a resonant QS, es-
tablishing a good agreement with exact results derived al-
ready for this case.13 We relate the minor difference between
the exact and the approximate results �see Figs. 5 and 7� to
the fact that in the latter case, only the first term of the
asymptotic expansion was taken into consideration. To in-
crease the accuracy, the next-to-leading terms of the expan-
sion should be accounted for.

We also note that an interesting application of our method
could be the calculation of the time delay. In fact, as shown
in Appendix B, the exact expression for the transmitted am-
plitude and the approximate one practically coincide for a
narrow resonance. This concerns the modulus as well as the
phase factor �see Fig. 3�. Since the delay time is expressed as
the energy derivative of the transmitted phase, the derived
analytic expression for the amplitude gives a possibility to
calculate this parameter as an explicit function of all the
relevant variables. This is a further advantage of our method.

FIG. 4. ��MSA� �dashed line� and ��� �solid line� for N=1,
Sb=0, 	=100, S0

1=1.0, l0=1.0, l1=1.0, �a� 
1=0.01, and �b�

1=0.001.

FIG. 5. ��MSA� �dashed line� and ��r
ex� �solid line� for N=2,

Sb=0, 	=100, S0
1=1.0, S0

2=1.0, l0=1.0, l1=1.0, l2=2.0, �a� 
1=1.0,

2=0.5, and �b� 
1=0.5, 
2=0.4.

FIG. 6. ��MSA� �dashed line� and ��� �solid line� for N=2,
Sb=0, 	=100, S0

1=1.0, S0
2=1.0, l0=1.0, l1=1.0, l2=2.0, �a� 
1=0.2,


2=0.05, and �b� 
1=0.04, 
2=0.02.
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The results on this problem, as well as a comparison with
other approaches and investigation of other incident pulses,
will be published elsewhere.

To complete, we say a few words about an issue of our
consideration in general. It consists of the idea of relating
intricate peculiarities and singular behavior of the amplitude
with the saddle point positions. Then, due to analyticity, the
regular part is described well by asymptotic formulas.

APPENDIX A: EXPANSION OF THE S-MATRIX IN A POLE
REPRESENTATION

The S matrix is meromorphic in the entire complex k
plane, leading to the general expansion20,25,26

S�k� = 	
i=−�

� � Ri

k − Ki
+

Ri

Ki
� , �A1�

with Ri= iS0
i �i /2. In Eq. �2�, we reduce Eq. �A1� to the spe-

cial case of N isolated resonances. In this case, the contribu-
tion of all other resonances i� �1, . . . ,N� can be approxi-
mated by a constant in the relevant k range so that

Sb 
 	
i��1,2,. . .,N�

Ri

k0 − Ki
+ 	

i=−�

�
Ri

Ki
. �A2�

Because of the summation over infinitely many Ki and Ri, it
is difficult to construct Sb from Eq. �A2� directly. For N=1,
one can calculate R1, K1, and Sb from the expression

S�E� � i
S�E0� − Sbg

e + i
+ Sbg, �A3�

with e=2�E−E0� /�, derived in Ref. 12. From Eq. �A3�,
S�k� follows as given in Eqs. �4�–�6� of Ref. 13. However,
in this paper, we consider the Ki, Ri, and Sb as given input
parameters.

APPENDIX B: RESONANT TRANSMISSION OF A
GAUSSIAN PULSE IN MUCH-SADDLE-POINT

APPROXIMATION FOR �\�

Let us write explicitly the expression for the saddle point
s1 in Eq. �16� in the limit of large 	. We find the following
for the leading order terms:

s1 = i
x̄ − l0	

1 + i	
+

1

li − l0 + 
i	 − i�x̄ + 
i − li	�
+ O��−2� .

�B1�

Taking into account only the leading order term in 	→�, it
results that

�gres�2��s1��−1/2 = �1 + 	2�1/4�s1�1/4 = �1 + 	2�1/4 + O�	−2�
�B2�

and

1

�s1 + �i�
=

�1 + 	2

��li − l0 + 
i	�2 + �x̄ + 
i − li	�2�1/2 . �B3�

Substituting these expressions into Eqs. �17� and �8�, setting
Sb=0, and taking into account only a single i, we find

��MSA�x̄,	 → ��� = C�e−�1/2���x̄ − l0	�2/1+	2�

�
�1 + 	2�1/4

��li − l0 + 
i	�2 + �x̄ + 
i − li	�2�1/2 �B4�

for the modulus of the transmitted pulse where C� is an
inessential constant. This expression agrees with the corre-
sponding leading order term of the analytic result in Eq. �19�
which can be written in the form

��x̄,	 → �� = C exp�i arg��as��e−�1/2���x̄ − l0	�2/1+	2�

�
�1 + 	2�1/4

��x̄ + 
i − li	�2 + �
i	 + li − l0�2�1/2 , �B5�

with

arg��as� =
1

2
arctan 	 +

�x̄ − l0	�2	

2�1 + 	2�
− arctan�
i	 + li − l0

x̄ + 
i − li	
� .

�B6�

The contribution to the wave function coming from the
saddle point s2 is damped in time much faster than that of s1
and can therefore be neglected at long times.
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